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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 2492 

A METHOD OF SOLVING THE DIRECT AND INVERSE PROBLEM OF SUPERSONIC 

8 FLOW ALONG ARBITRARY STREAM FILAMENTS OF 

REVOLUTION IN TURBOMACHINES 

By Chung-Hua Wu and Eleanor L.  Costilow 

SUMMARY 

Analysis of the supersonic flow in two two-dimensional high- 
solidity cascades and in a partly supersonic symmetrical nozzle shows 
that there is, in general, significant deviation of the mean streamline 
shape from that of the mean Made line and that the effect of "blade 
thickness and blade curvature on the specific mass flow along the mean 
streamline is to increase the specific mass flow along the mean stream- 
line about 9 percent above that given "by a one-dimensional estimate. 
In order to determine these effects more accurately for turbomachines 
of arbitrary huh and casing shapes to be used for the three-dimensional 
through-flow calculation, a method is developed for the determination of 
the supersonic flow along stream surfaces of revolution in turbomachines. 
In this method, the shapes of the stream surfaces are arbitrary, and the 
method also takes into account the distance between adjacent stream 
surfaces, which varies along the flow path. Thus, the method can be 
applied to turbomachines with arbitrary hub and casing shapes. 

In addition to their use for direct problems, these equations can 
be used to design blade elements in supersonic flow along an arbitrary 
stream filament of revolution in turbomachines. 

INTRODUCTION 

Recent investigations of the applicability of supersonic flow in 
compressors have shown the desirability of using such flow to increase 
the pressure ratio per stage (references 1 and 2). For axial-flow 
compressors having blades with short radial length, the over-all 
performance analysis is often based on a one-dimensional approximation, 
in which only average values in the channel are considered (for example, 
references 3 and 4). For radially long blades and variable root or tip 
radii, methods are proposed for analyzing the flow by a three- 
dimensional "through-flow" calculation, which considers the axial and 
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radial variations of the flow "but only a mean value in the circumferen-        « 
tial direction (references 5 and 6). The flow on the relative mean 
stream surface, which divides circumferentially the mass flow passing 
through the channel "between two "blades into two equal parts, is taken 
to represent the mean flow through the blading.  It is suggested in co 
reference 5 that the shape of this mean stream surface and the correction      en 

o 
factor h for a finite number of thick "blades he obtained from the 
analysis of a number of two-dimensional flows along general surfaces of 
revolution starting at different inlet radii. A method was therefore 
developed at the NACA Lewis laboratory to determine the flow variation on 
these flow surfaces in a supersonic turbomachine. When the flow surfaces 
may he approximated by cylindrical surfaces, the flow equations reduce to 
the usual plane flow where the hodograph characteristics are applicable 
for the flow analysis if the entrance shock is weak. 

In order to illustrate the effects of blade thickness and blade 
curvature and to determine, in general, the correlation between the 
shapes of the mean streamline and the mean blade line, flow on the mean 
streamlines was determined for two supersonic cascades and a partly 
supersonic hyperbolic nozzle. 

This method, in addition to its use for flow analysis of a given 
blading, can be used to design blade elements along stream filaments of 
revolution having arbitrary thickness variation along the flow path. 

SYMBOLS 

The following symbols were used in this report: 

A      area normal to velocity 

a      local speed of sound 

b      correction factor for finite number of thick blades 

c      line tangent to characteristic curve 

Cp     specific heat at constant pressure 

h      static enthalpy 

I      h + iw2 - |o>2r2 

J,K,L   coefficients of partial derivatives of i|r 
M,N 

t 



o 
in 
N 

* 
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2,cp    orthogonal coordinates on mean surface of revolution 

M      local Mach number 

m      mass flow between suction surface of "blade and streamline, 

j      pWd£ 

P "blade pitch or spacing 

R gas constant 

r radial distance from axis of machine (fig. l) 

s entropy 

T static temperature 

t blade thickness in the y-direction 

¥ resultant relative velocity 

x,y    rectangular coordinates for cylindrical flow with y-axis- 
chosen along line joining leading edges of blade 

¥ 
ß      relative flow angle, tan  y- 

7      ratio of specific heats 

A      slope of characteristics on mean surface of revolution 

|i      Mach angle,  sin"-1- ^ M 

|      distance measured from suction to pressure surface normal to 
resultant velocity 

p      mass density 

a slope of mean surface of revolution in meridional plane, 

tan" ,-l _£ 

T      normal thickness of stream filament of revolution 

i|r      stream function 
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a> angular velocity of blade • 

Subscripts: 

i      inlet condition 

2,cp    meridional and circumferential components 

m      on mean streamline o 
in 
(M 

r,z components in r- and z-directions, respectively 

s initial supersonic state 

t at throat of nozzle 

x,y components along x- and y-directions, respectively 

1,2 first and second family of characteristics, respectively 

METHOD 

On a general surface of revolution defined "by the orthogonal 
coordinates I    and cp (figs. l(a) to 1(c)), the supersonic flow of a 
fluid along a stream filament of revolution of varying normal thickness 

. T = T(7) is described by the following forms of the flow equations. By 
analyzing the flow going in and out of the element shown in figure l(d), 
the continuity equation for steady flow may be expressed by 

ö(TPW7r)  ö(TPW ) 

—3T- + St?- ' ° (D 
When equation (l) is expanded and the relation 

am0 = J-a(i 

is used, equation (l) becomes 

w <v>+ & <TV + i (v If ♦ w*|) - 5 (v I+ w? -1- ° Scp, 

(2) 

i 
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For adia"batic flow, the entropy along a streamline remains constant for 
a nonviscous fluid; that is 

Ds  TT ös , wcp ös n 

Dt=^5T+r Fr0 

which allows the last term to "be dropped from equation (2). For a 
perfect gas, 

h = cpT 

and 

a2 = (y - l) h 

When this substitution is made for a2 and the expression is multiplied 
1 

by h^ , the equation of continuity (2) becomes: 

|-(Tw7rhr-1J+ mvy^/= °       <3) 

Expressed in the coordinates I    and qp, the equation of steady motion of 
a nonviscous fluid as given by equation (l4a) in reference 5 in the 
circumferential direction, is 

1 ÖW7 
r £-^+4-.-*(iÜ-!H)-°    w 

From equation (3), a stream function \|r is defined by: 

1 

% - W* (5a) 

Ü - - V'1 (sb) 
Substituting equations (5) into equation (4) results in the follow- 

ing relation: 
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V1 "  a2  / Ö22  " a2    r 5^2  + V a
2   / r2 ÖCf£ 

_1_ 
2 

W, a 2   CST   .   hi 
(ür  + _)slnff + _5_ + s_ 5\|r 

CO 
ro 
en o 

:-s 1    hi 

a2r ^ r£&-° 
(6) 

If the symbols J, K, L, M, and N are used to represent the coefficients 
of the partial derivatives in equation (6),   it may he rewritten as 

J h2i  ,   2K    ö2\|r     ,    L   h2i  ,   .. d\|r  ,   N M 
hi 2 

+   r   3cp~c*l + ^2 öcp; 2 + MST + - cKp » 0 (7) 

The characteristics of equation (7) are then 

J"S?) - 2K ( r ^) + L = 0 (8) 

For equation (8), two real characteristics exist for supersonic 
flow, the slopes along which are 

, ,     dcp\        K     VK
2
-JL 

Xl " (r äl)1 
= J " -J— (9a) 

dgjj K     VK
2
-JL 

X2 = (r W 

When the polar coordinates transformation that ß = tan 

(9h) 

-1 _2 
w7 

and 

= sln_1(i, sin_1(IJ = sin 

to the flow angle and the Mach angle is 

is used, the relation of 7\ 
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X-j_ = tan (ß + u) (10a) 

A2 = tan (ß - u) (lOb) 

By the use of equations (7) and (9), the rate of change of 
\|r-derivatives along the characteristics with respect to I    is obtained 
(see reference 5 for procedure) : Along c-j_, 

d (ty)  . *2 d {by) ^ M St ^   N M      rt .  . 

and along eg 

dl VSlJ + — IT V» + J oT  + J? Sy = ° <llb) 

For ease in computation, it is more convenient to express equa- 
tions (ll) in terms of the magnitude of the resultant velocity W and 
the flow angle ß as follows:  Substituting equations (5) in equa- 
tions (ll) and differentiating yields the following expression along c-^: 

J 

Similarly, along eg, 

1 (NWZ  - MWJ  + _I   T Wj  sin a = 0 

<^-vjt+
T(^-^)+<^-v 

j (KWZ - MW<J  + ^ TWZ  sin a = 0 

dl 
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With 

W^ = ¥ cos ß 

W„ = W sin ß 

and 

dh      d_/L      wf     co2r2 

dZ      dZ I 2    +    2 
dl      TT dW        2 _ _ w ^ + CD r sin a 

and with the use of equations  (lO),   equations  (ll)  become 

l aw    .        ap     .   2 
w « " tan » « " tan   » 

i ^ + tan n 5£ - tan2 n 

m2r sin a     _1_ dl      1 dT      *2 sin a cos P _ __.  
a2 + a2 dl + T dl + r(Xg cos ß -  sin ß)  + J (\2 cos ß - sin ß) 

1 H cos ß - M sin ß 

  ^   T 
Xl sln °cos^     + 1 N cos ß - M sin ß 

2 dl " T dl x r(Xx cos ß - sin ß)  J (X cos ß - sin ß) 
uTr sin a +l_ai + lcLT+

Al 

(12a) 

= 0 

(12b) 

along c-]_ and eg, respectively. 

From two points a and b (fig. 2) where the flow is known, the 
tangents to the characteristics curves at these points are determined 
from equations (9a) and (9b), respectively, and intersect at a point c. 
By writing equation (l2a) (equation along c-jj at a and equation (l2b) 
(equation along eg) at b in finite difference form and solving simul- 
taneously, the new flow values at c are determined; thus, along CQ_ 

at a, 

1 W W 

Wa 2c - la 

and along eg at b, 

- tan u. 
ß CD^r sin o a     ? a 
— - tan^ ua  
'a a^ 

(13) 

wc - wb 
Wb 1( 

+  tan ^b 
ßb a) r sin a> 

- tan^ [L-fo + (14) 

The unknowns in both equations (13) and (14) are Wc and ß j Al     is 
determined by the intersection of the tangents to the characteristics 
from points a and b so that lc -  I 
equation. 

a and lc are known in the 
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For a characteristic curve that intersects the passage boundary, 
such as is shown at d or e in figure 2, the situation is a little 
different. In a direct problem with a given blade configuration, the 
angle ß at the intersecting boundary point is known.  In the inverse 
or blade-design problem, either ß at the intersecting boundary point 
is known from a desirable turning specified at that point or the magni- 
tude of the resultant velocity W at the intersecting boundary point is 
known from a specified velocity distribution on the blade. In all cases, 

co      either equation (13) or (14) written for the characteristic from 
en      d or e determines the unknown W or ß at the intersecting boundary 
°      point, whereas, as shown previously, two simultaneous equations along 

intersecting characteristics are required inside the passage.  In 
general, after ¥ and ß are determined at a new point, other fluid 
properties at that point are calculated and the characteristic directions 
constructed to repeat the process progressively downstream.  (For irrota- 
tional inlet flow with uniform I and s and when the rotationality 
introduced by the entrance shocks is neglected, I and s are uniform 
throughout for adiabatic flow, and the derivatives involved in equa- 
tions (12) become zero.  Otherwise, the derivatives are to be evaluated 
by using the values at the inlet on different streamlines, the constancy 
along the streamline before and after shock, and the changes across the 
shock.) 

Thus a method is available either to analyze the blade-to-blade 
flow variation along a given arbitrary stream filament of revolution in 
a supersonic turbomachine, or to design the blade element on a given 
arbitrary stream filament of revolution for a specified turning distri- 
bution or a specified velocity distribution around the blade.  The con- 
figuration of the stream filaments (fig. 1(a)) is taken from a 
through-flow calculation (references 5 and 6). For a direct problem, 
successive calculations between the through-flow calculation and the 
present calculation are necessary until the solution converges.  The 
through-flow calculation gives the configuration of stream filaments of 
revolution, and the calculation on these stream filaments of revolution 
gives the shape of the mean stream surface and the factor b used in 
reference 5, which accounts for the effect of blade thickness and 
curvature.  In an inverse problem, the calculation is shortened if the 
estimated values of the factor b used in the through-flow calculation 
for a desirable blade-thickness distribution results in a blade dimension 
which has a thickness distribution close enough to the desirable one. 

In order to give a general idea of the order of magnitude of this 
factor b for the effect of the blade thickness and curvature on the 
mean flow and the closeness of the shape of the mean stream surface to 
the blade mean surface, an analysis is made for the simpler case of 
cylindrical flow utilizing available data for two two-dimensional 
high-solidity cascade recently investigated by Liccini at the HACA 
Langley laboratory (unpublished data) and for a partly supersonic nozzle 
investigated by Emmons (reference 7). 
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ANALYSIS OF FLOW IN TWO SUPERSONIC CASCADES AND 

ONE PARTLY SUPERSONIC NOZZLE • 

The shapes of the two high-solidity 90° turning-angle cascades are 
shown in figure 3. Each cascade has an inlet Mach number of 1.78 and 
a 10° wedge angle at the leading edge.  (The blade is so designed that 
the leading-edge shock is cancelled after the first reflection.) The 
shape of the partly supersonic nozzle is shown in figure 4.  (Because 
the nozzle is symmetrical, only half of it is shown.) o 

In the case of the symmetrical nozzle, the center line is the mean 
streamline. For the two 90° cascades, the mean streamline (the one 
which divides the mass flow in the channel into two equal parts) has to 
be established from the data given on the characteristic net of the 
blade design. The mass flow m at any point in the channel is deter- 
mined by integrating across the channel the local specific mass flow 

given by the characteristic net; thus, m = J  pW d£.  The values of 
o 

the local specific mass flow can be obtained by using the table given in 
reference 8 or similar tables.  The shape of the mean streamline is to 
be compared with that of the mean blade line, which is obtained by 
taking the mean of the blade coordinates in the pitch direction. 

The value of the specific mass flow W or Wx is then obtained 
along the mean streamline downstream of its intersection with the 
leading-edge shock. The discontinuity in the flow curves at the point 
where the mean streamline intersects the "reflection" is smoothed out 
in order to emphasize the general trend. These values are to be com- 
pared with the corresponding variation in the channel width (or area) 
perpendicular to W or Wx in order to determine if there is any corre- 
lation between the variations in specific mass flow on the mean stream- 
line and the corresponding area. 

In the case of the nozzle, the flow variation on the mean stream- 
line is obtained from the Mach number given in reference 7. The vari- 
ation in specific mass flow is compared with the channel-area ratio. 

The results obtained in the two 90° turning passages are given in 
figures 3 and 5 to 9. The results obtained with the symmetrical nozzle 
are shown in figures 4, 10, and 11. 

In figures 3(a) and 3(b), the mean streamline is compared with the 
mean channel line.  In figure 3(a), where the cascade is of the higher 
solidity and has thinner blades, the shape of the mean streamline 
closely approximated that of the mean camber line; however, in the 
second cascade (fig. 3(b)), which has a lower solidity and thicker 
blades, the mean streamline deviates more from the mean blade line. 
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k The specific mass flow on the mean streamline based on the resultant 
velocity as shown in figure 5 indicates clearly that the effect of blade 
thickness and curvature on the through flow is to increase, in both 
cases investigated, the specific mass flow along the mean streamline a 
chordwise average of 9 percent over that given by the area reduction 
(due to blade thickness) based on a one-dimensional calculation. If a 
comparison of specific mass flow in the axial direction with variation 
of channel width in the y-direction is made (fig. 6), as is done in 

N      reference 9 for subsonic flow, corresponding trends are obtained, and 
^      the increase in specific mass flow again averages about 9 percent 
o      chordwise over the area ratio. This increase is more than two times the 

increase obtained in reference 9. 

The variations of axial and tangential velocity components on the 
mean streamline are shown in figures 7 and 8, respectively. The vari- 
ations of the velocity across the channel in the two cascades at the 
stations indicated on figure 3 are shown in figure 9. 

The result obtained in the nozzle problem is shown in figures 10 
and 11.  The results shown in figure 10 correspond to the nozzle shown 
in figure 15 of reference 7, which includes a small portion of super- 
sonic flow in the divergent portion of the nozzlej whereas figure 11 
corresponds to figure 16 of reference 7, with supersonic flow extending 
throughout the divergent portion and the Mach number increasing 
beyond 2. For the subsonic flow in the convergent portion, the local 
specific mass flow and area are normalized by the values at the throat; 
for the flow in the divergent portion (partly supersonic, fig. 8, and 
purely supersonic, fig. 9), the local specific mass flow and area are 
normalized with respect to the conditions where the flow is initially 
supersonic. The comparison between the specific mass flow and area 
ratio is similar to the previous result.  The increase in the specific 
mass flow on the mean streamline is entirely due to the area reduction 
(no turning) and is about 8 percent higher than a one-dimensional 
correction. 

The results obtained in these analyses give some idea regarding the 
closeness between the shape of the blade mean line and mean streamline 
and of the order of magnitude of the blade thickness and curvature 
effect for through-flow calculations. For an approximate through-flow 
solution of a similar blading, these results may be directly applied. 
For different types of blading, similar analyses can be made for the 
two-dimensional flow on cylindrical surfaces or surfaces of revolution, 
which are formed by fluid particles initially lying on circular arcs at 
a number of radii upstream of the machine by using the general relations 
derived herein. The mean streamline obtained at the different radii can 
be joined together to form the mean stream surface.  The ratio of 
(Pwx)m to (Pwx^i obtained in these calculations can be taken as the 
thickness correction factor b in the relations between stream function 
and velocities (equation (ill) of reference 5). 
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More knowledge of this kind for a number of typical bladings will        ^ 
be very useful in the design of these bladings. From this knowledge and 
a certain blade-thickness distribution, which is desired from the blade 
strength and other considerations, a good estimate of the factor b can 
be made and used in the through-flow calculation. From this solution, 
the blade section on a number of surfaces of revolution can be designed 
by the method given in the report. 

SUMMARY OF RESULTS ° 
(M 
CM 

Analysis of the supersonic flow in two two-dimensional 90° turning 
passages of high solidity and in a partly supersonic symmetrical nozzle 
shows that there is, in general, significant deviation of the mean 
streamline shape from that of the mean blade line and that the effect of 
blade thickness and blade curvature on the specific mass flow along the 
mean streamline is to increase the specific mass flow along the mean 
streamline about 9 percent above that given by a one-dimensional 
estimate.  In order to determine these effects more accurately for 
turbomachines of arbitrary hub and casing shapes to be used for the 
three-dimensional through-flow calculations, a method is developed for 
the determination of the supersonic flow along stream surfaces of revo- 
lution in turbomachines.  In this method the shapes of the stream 
surfaces are arbitrary, and the method also takes into account the 
distance between adjacent stream surfaces, which distance varies along 
the flow path. Thus, the method can be applied to turbomachines with 
arbitrary hub and casing shapes. 

In addition to their use for direct problems, these equations can 
be used to design blade elements in supersonic flow along an arbitrary 
stream filament of revolution in turbomachines. 

Lewis Flight Propulsion Laboratory 
National Advisory Committee for Aeronautics 

Cleveland, Ohio, July 13, 1951 
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(a)   On mean surface of revolution. 

,A> 

la lb lc 

(b) Image in l,cp plane. 

Figure 2. - Blade section and calculating points. 
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24 NACA TN 2492 
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Figure 10. - Comparison of variation in mean specific mass flow and area ratio 
with short portion of supersonic flow in divergent section. 
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Figure 11. - Comparison of variation in mean specific mass flow and area ratio 
of nozzle with supersonic flow throughout divergent section. 
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